\mathbb{N}
There are 2 common ways to construct \mathbb{N}
- by
Peano Axioms
- by
Set Theory
(\emptyset and \cup)
Dedekind–Peano Structure is the ternary tuple (e,S,\mathbb{N}) such that
- e is an element, S is the a function, \mathbb{N} is a set
- e \in \mathbb{N} (neutral element)
- \forall a \in \mathbb{N}, S(a)\in\mathbb{N} (successor function is \mathbb{N}\rightarrow\mathbb{N})
- \forall a,b\in\mathbb{N}, (S(a)=S(b) \implies a=b) (successor function is injection)
- \forall a \in \mathbb{N}, S(a)\mathbb{N}eq e (the range of successor function exclude e, no circle, e is the first)
- \forall P,\{P(e) \land \forall k \in \mathbb{N},[P(k)\implies P(S(k))]\} \implies [\forall n \in \mathbb{N}, P(n)] (induction)
So, we can define 0 := e, 1:=S(0),2:=S(1)=S(S(0)), ...
\mathbb{Z}
By equivalence classes of ordered pairs of N, we can construct \mathbb{Z}
(a, b) to express a - b
\mathbb{Z} = \{[(a,b)] \mid a, b \in \mathbb{N} \}
\mathbb{Q}
\mathbb{Q} = \{\frac{m}{n} \mid m, n \in \mathbb{Z} \}
\mathbb{R}
There are 3 common ways to construct \mathbb{R}
- by Axioms (
Field Axioms
,Order Axioms
andCompleteness Axiom
) - by
Cauchy Sequence
- by
Dedekind Cut
Field Axioms
A1 A2 A3 A4
M1 M2 M3 M4
DL
Order Axioms
Completeness Axiom
Archimedean property
\mathbb{C}
\mathbb{C} = \{a+bi \mid a, b \in \mathbb{R}, i^2 = -1 \}